
CurvJ 1.0 Release Notes

Legal Notice
CurvJ program, documentation, samples, and associated files in this zip archive ©2005 Harold Fortuin.
CurvJ may be freely distributed in its original unaltered zip archive, or in an uncompressed form if
otherwise unaltered from the original zip archive. The current zip archive, CurvJAll070105.zip, is
posted on a page linked to http://fortuitous-consulting.biz
and may be altered from time to time by Harold Fortuin. All versions of the archive posted there by
Harold Fortuin fall under these conditions of use.

No warranty is provided or implied. Use at your own risk.

Introduction
CurvJ is a computer program developed by Harold Fortuin in Java to generate MIDI sequencer files
which explore forms of ensemble coordination made possible by the computer-controlled synthesizer. Its
algorithms and core functionality were developed by Fortuin in his dissertation program Curvaceous, a C
language Mac/UNIX command line program released in 1993, and demonstrated that year at the Fourth
International Symposium on Electronic Art.

Like Curvaceous, CurvJ can generate any number of tracks, each track being a precisely defined
combination of
1) an accelerating or decelerating pulse
2) a pitch motif stated and then transposed a number of times in succession
3) a crescendo or decrescendo done with MIDI velocity values

The curves which define the acceleration/deceleration and crescendo/decrescendo are generated from
hyperbolas defined by the user.

However, with CurvJ tracks can be defined from a Java Swing graphical user interface and/or from Java
.properties files for ease of use. Plus, as a Java executable it can be run on nearly any operating system
which supports Java, including Windows, Macintosh, and Linux.

Unlike Curvaceous, CurvJ version 1.0 does not yet contain the ability to
create groups of tracks which gradually diverge from and converge to one of these "originally defined"
tracks in terms of rhythm, pitch (using MIDI pitch bend values), or both. These will be available in a
future release, and will be configured from the currently disabled controls for Rhythm and Pitch
Branching in the Global Parameters dialog box.

Install and Run CurvJ
1) Be sure you have the Java Runtime or Java Development kit, version 1.16 or greater, installed on your
computer. Recent versions are commonly called J2SE.

If you are not sure, try typing
 java -version
 in your Command Prompt (or MS-DOS Command) window on your Accessories on a Windows PC, or
in your Terminal Utility on Mac OS X, or from your Linux command line.

If it complains that this command isn't recognized, it is NOT installed. It can be downloaded from
http://java.sun.com, or possibly from Apple for the Macintosh.

If it is installed, it should display the Java version.

NOTE: CurvJ uses the Java Swing (Java Foundation Classes) library, which was a separate download in
earlier versions of Java. For such versions you need to download a compatible swingall.jar, and put this
jar on your java classpath.

2) Download the CurvJAll.zip.
3) Extract into your chosen directory/folder.
4) From your Command Prompt, Terminal, or command line, navigate to your chosen directory
5) Run the command
java -jar {JarFileName}.jar

NOTE: If you downloaded a separate swingall.jar, run the following command instead:
java -cp {mySwingPath}\swingall.jar -jar CurvJ.jar

Running CurvJ
The first step required (unless you immediately quit) is to define a file for your output. From the File
menu, select Save Output As, and browse to the desired directory, name the file (which, despite the file
type label, CAN be read by any operating system), and click OK.

Next, select the Global Params command from the Edit menu. Here you should set your total number of
tracks and tempo, and then click OK. (Later you will be able to define pitch and rhythmic
convergence/divergence, also called "branching" by Fortuin.) Note that the values appearing by default
can be defined in the
CurvJGlobal.properties
which should be in the same directory as the CurvJ.jar. If no such file exists, the program will present an

internally defined set of default values. (If you wish to define your own defaults, it would be wise to
first copy the original file, which should then be renamed, so you will always have the original defaults.)

Next, select the Track Params command from the Edit menu. At the top of the Track Params dialog you
can set the MIDI channel and see which of your n tracks you are editing (tracks can only be edited in
1...n sequential order). The three tab panes, one each for Rhythm, Pitch, and Velocity, are accessible
below that. Note that the values appearing by default could be defined in 1..n
CurvJTrackn.properties
which again should reside in the same directory as the CurvJ.jar.

Edit the values on the Rhythm, Pitch and Velocity tabs with the help of the instructions which follow.
Click OK in a given Track Params dialog once you have entered all the values you want, or if you are
accepting the defaults for that track. Then, if you are creating more than one track, select the Track
Params command again from the Edit menu. You will need to select this command for as many times as
you have tracks.

Note that once you click OK in your last Track Parameters dialog, you may see
FINISHED Writing the MIDI File {myPath/myFile.mid}
displayed in the command line window. (It displays on Windows if run from the Command Prompt
window, but not from the Run menu. It does not display in the Terminal on Mac OS X.)

Rhythm Tab
All time values are defined in Measures, Beats, and Ticks. The program writes values to 4/4 time, and
defines 480 ticks per quarter note. (Of course, 4/4 time is a useless concept from a CurvJ listener's
perspective!) As shown by the tool text, time values should be entered as
measures:beats:ticks

Start Offset - how long a silence should precede the start of the first note
Target Duration - approximately how long in total the track will last
Minimum Attack - the smallest distance between subsequent note attacks that will be permitted. This
value can override the Target Duration.

Other fields should be self-explanatory.

Pitch Tab
Pitches should be entered as follows, with octaves ranging from 0-10:
A-G{# or space}{space, if a #}octave
For example, C 5 G# 0 G 10

C 5 is middle C (MIDI note number 60). C 0 is the lowest MIDI note, and
G 10 is the highest.

Pitch intervals, entered for both the Interval and Transposition lists, are defined by positive or negative
half-step values. For example, an octave up is 12, while a half-step below is -1.

A Segment is the pitch motif which will be repeated successively in the track in transposition. The
intervals in the interval list will define the Segment. A Segment consisting of the three pitches C 5 D 5 B
4 could be defined by
1) Entering C 5 as the Starting Pitch
2) Entering 2 in the Interval field, and then clicking the + Interval button
3) Entering -3 in the Interval field, and then clicking the + Interval button

If a mistake was made in these entries, the - Intervals button can be clicked to clear the interval list. The -
Transp's button works similarly for transpositions.

The transposition interval values in the transposition list will define the distance between the final note
of last Segment and the first note of the start of the subsequent transposed Segment. So to repeat our
example Segment up one half-step after its first statement, a 2 (since it would need to start 2 half-steps
above the last pitch of the previous Segment) should be entered in the Transposition field, and + Transp
should then be clicked. Of course, a number of additional transpositions could be entered this way.

The program will loop through its list of transpositions until all notes have a pitch. And of course the
final Segment can be truncated if the number of notes resulting from the Rhythm values is not an even
multiple of the number of pitches in the Segment.

If the pitch calculations result in a pitch that is higher than the Upper Bound, or lower than the Lower
Bound, the interval between the Bound and the out-of-bounds pitch is calculated

If Reflect From Bounds is chosen:

1) The calculated interval is multipled by -1 and added/subtracted to the crossed Bound to result in an in-
bounds pitch
2) All intervals on the inverval and transposition lists are multiplied by -1 and added in order to their
respective previous pitches, until another Bound is crossed.

If Wrap Around Bounds is chosen instead of Reflect from Bounds:
1) The calculated interval is multipled by -1 and added/subtracted to the opposite Bound to result in an
in-bounds pitch near the opposite Bound.
2) All intervals on the inverval and transposition lists are then applied as usual, until another Bound is

crossed.

Velocity Tab
The Largest and 2nd Largest Velocities define the MIDI velocity curve. Values must range from 1 - 127.

Samples
Some of the original Curvaceous examples have been ported to CurvJ, and can be executed from their
respective directories.

StringHyp: a series of acceleration-decelerations on one MIDI channel, done with
successively higher time offsets on copies of the same track.
StringHypCanon: like the previous, but with a group of tracks comprising a second line
of similar music.
StringHypCanonInverted: like the previous, except now that the second line of music has inverted
intervals.

Future Releases
The ability to create groups of tracks which gradually diverge from and converge to one of the "originally
defined" tracks in terms of rhythm, pitch (using MIDI pitch bend values), or both will be implemented
and available from the Global Params dialog.

